Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: covidwho-1129732

ABSTRACT

BACKGROUND: Acute lung injury (ALI) or its most advanced form, acute respiratory distress syndrome (ARDS) is a severe inflammatory pulmonary process triggered by a variety of insults including sepsis, viral or bacterial pneumonia, and mechanical ventilator-induced trauma. Currently, there are no effective therapies available for ARDS. We have recently reported that a novel small molecule AVR-25 derived from chitin molecule (a long-chain polymer of N-acetylglucosamine) showed anti-inflammatory effects in the lungs. The goal of this study was to determine the efficacy of two chitin-derived compounds, AVR-25 and AVR-48, in multiple mouse models of ALI/ARDS. We further determined the safety and pharmacokinetic (PK) profile of the lead compound AVR-48 in rats. METHODS: ALI in mice was induced by intratracheal instillation of a single dose of lipopolysaccharide (LPS; 100 µg) for 24 h or exposed to hyperoxia (100% oxygen) for 48 h or undergoing cecal ligation and puncture (CLP) procedure and observation for 10 days. RESULTS: Both chitin derivatives, AVR-25 and AVR-48, showed decreased neutrophil recruitment and reduced inflammation in the lungs of ALI mice. Further, AVR-25 and AVR-48 mediated diminished lung inflammation was associated with reduced expression of lung adhesion molecules with improvement in pulmonary endothelial barrier function, pulmonary edema, and lung injury. Consistent with these results, CLP-induced sepsis mice treated with AVR-48 showed a significant increase in survival of the mice (80%) and improved lung histopathology in the treated CLP group. AVR-48, the lead chitin derivative compound, demonstrated a good safety profile. CONCLUSION: Both AVR-25 and AVR-48 demonstrate the potential to be developed as therapeutic agents to treat ALI/ARDS.


Subject(s)
Acute Lung Injury/drug therapy , Immunologic Factors/pharmacology , Respiratory Distress Syndrome/drug therapy , Small Molecule Libraries/pharmacology , Animals , Chitin/pharmacology , Disease Models, Animal , Female , Lipopolysaccharides/pharmacology , Lung/drug effects , Male , Mice , Mice, Inbred C57BL , Pneumonia/drug therapy , Pulmonary Edema/drug therapy , Rats , Rats, Sprague-Dawley , Sepsis/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL